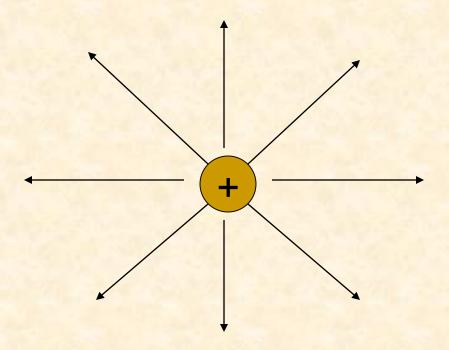
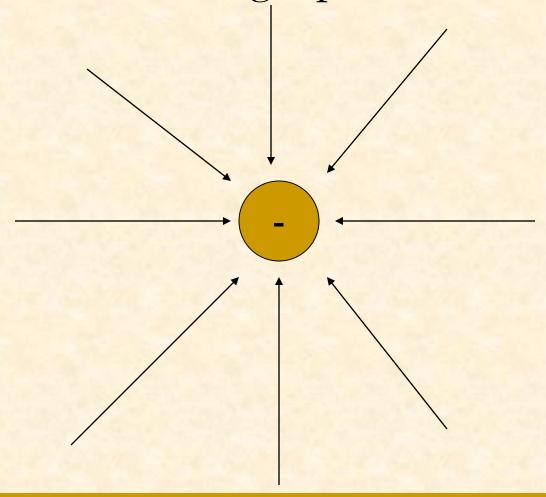
Teorema Gauss

- Garis Gaya Listrik
- Konsep fluks
- *Teorema Gauss
- *Penggunaan Teorema Gauss
 - Medan oleh muatan titik
 - Medan oleh kawat panjang tak berhingga
 - Medan listrik oleh plat luas tak berhingga
 - Medan listrik oleh bola isolator dan konduktor
 - Medan listrik oleh silinder isolator dan konduktor
 - Muatan induksi

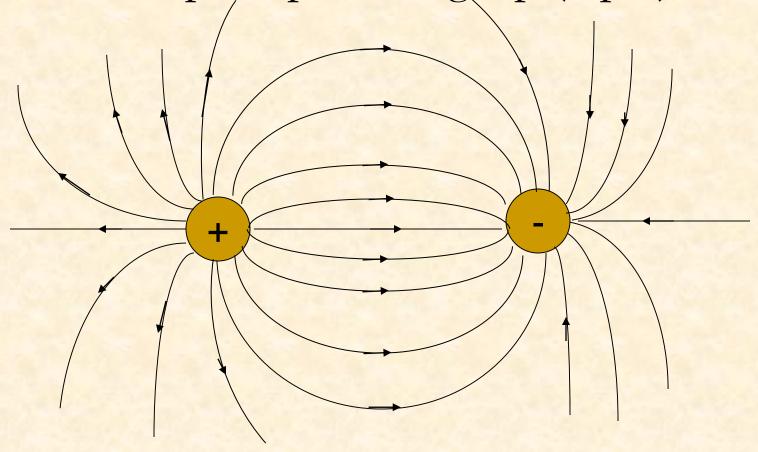
Garis gaya listrik


- Garis gaya listrik digunakan untuk menggambarkan medan listrik
- Arah medan listrik menyinggung garis gaya

■ Rapat garis gaya → kuat medan listrik


Garis gaya oleh sebuah muatan titik

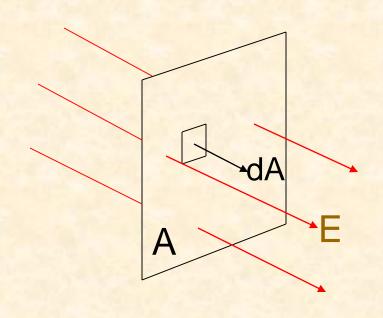
Oleh muatan titik positip


Garis Gaya oleh muatan negatip

Sebuah muatan negatip

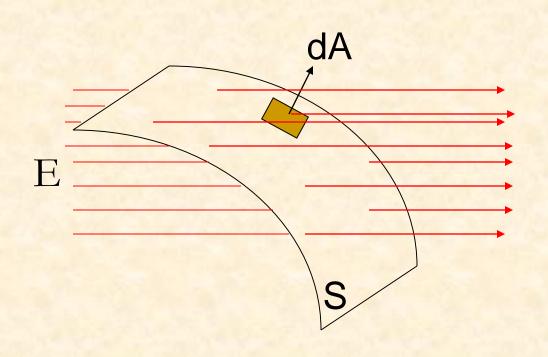
Garis gaya akibat dipol

Muatan positip dan negatip (dipol)


Fluks Listrik

- Definisi: banyaknya garis gaya listrik yang menembus suatu permukaan
- Untuk permukaan dA yang tegak lurus dengan arah medan, jumlah garis gaya yang menembus permukaan itu adalah

$$d\Phi = EdA$$


Total garis gaya yang menembus permukaan A

$$\Phi = \int_{A} d\Phi = \int_{A} E dA$$
$$= E \int_{A} dA = EA$$

Fluks untuk sembarang permukaan

 Untuk sembarang permukaan dA dengan arah tidak tegak lurus medan

$$d\Phi = \vec{E} \bullet d\vec{A}$$

Fluks total untuk permukaan S

$$\Phi = \int_{S} d\Phi$$

$$= \int_{S} \vec{E} \cdot d\vec{A}$$

Contoh soal

Sebuah medan listrik dinyatakan dalam persamaan.

 $\vec{E} = 2\hat{i} + 4\hat{j}$ Tentukan fluks yang menembus permukaan

a.
$$\vec{S} = 10\hat{k}$$

c.
$$\vec{S} = 10\hat{j}$$

d.
$$\vec{S} = 10\hat{i}$$

b.
$$\vec{S} = -10\hat{k}$$

d.
$$\vec{S} = -10\hat{j}$$

e.
$$\vec{S} = -10\hat{i}$$

Solusi

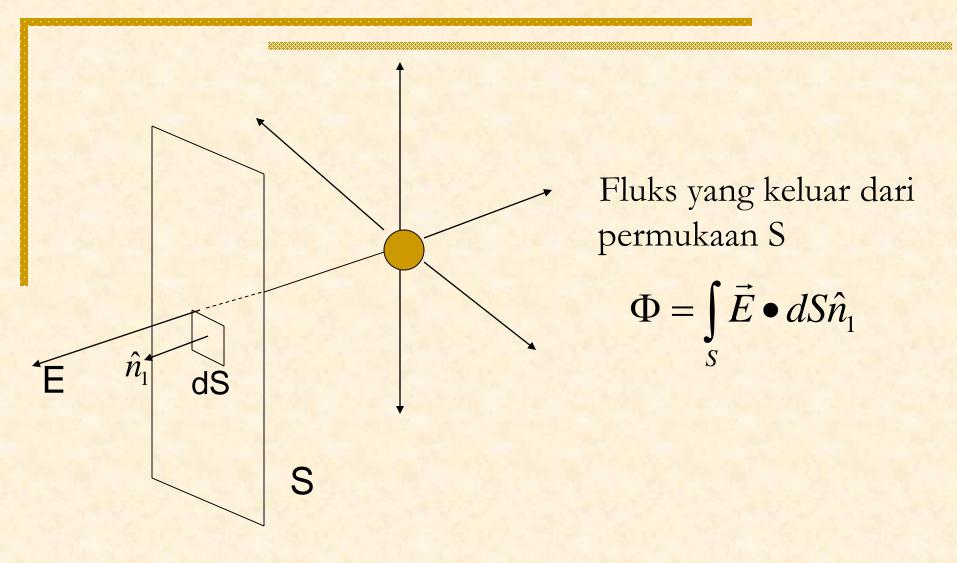
Karena medan homogen di seluruh permukaan yang ditinjau, maka fluks dapat dituliskan dalam bentuk

$$\int_{S} \vec{E} \bullet d\vec{A} \to \vec{E} \bullet \vec{S}$$

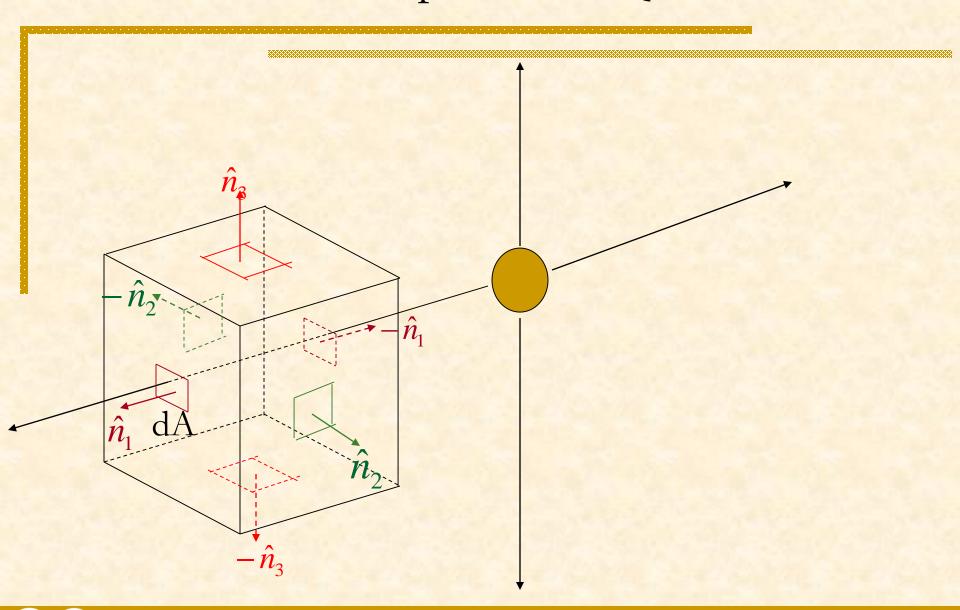
Solusi contoh soal

a.
$$\Phi = \vec{E} \cdot \vec{A} = (2\hat{i} + 4\hat{j}) \cdot 10\hat{k} = 0$$

b.
$$\Phi = \vec{E} \cdot \vec{A} = (2\hat{i} + 4\hat{j}) \cdot -10\hat{k} = 0$$


c.
$$\Phi = \vec{E} \cdot \vec{A} = (2\hat{i} + 4\hat{j}) \cdot 10\hat{j} = 40$$

d.
$$\Phi = \vec{E} \cdot \vec{A} = (2\hat{i} + 4\hat{j}) \cdot -10\hat{j} = -40$$


e.
$$\Phi = \vec{E} \cdot \vec{A} = (2\hat{i} + 4\hat{j}) \cdot 10\hat{i} = 20$$

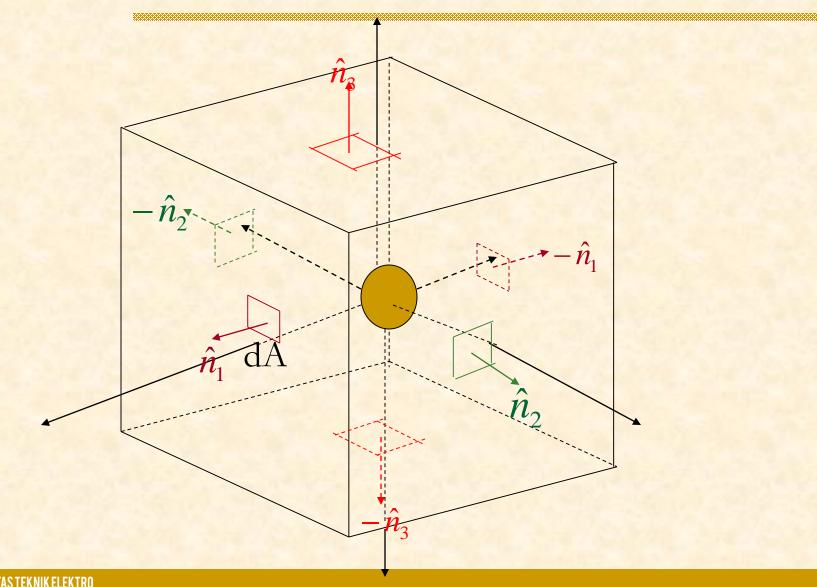
f.
$$\Phi = \vec{E} \cdot \vec{A} = (2\hat{i} + 4\hat{j}) \cdot -10\hat{i} = -20$$

Fluks, muatan Q, permukaan terbuka S

Permukaan tertutup, muatan Q diluar

Perhitungan fluks Q diluar permukaan

- Perhatikan arah normal permukaan dan arah medan listrik
- Fluks total pada kubus mempunyai nilai:


$$\Phi = \int_{S} \vec{E} \cdot d\vec{A}$$

$$= \int_{S} \vec{E} \cdot dA \hat{n}_{1} + \int_{S} \vec{E} \cdot dA (-\hat{n}_{1}) + \int_{S} \vec{E} \cdot dA \hat{n}_{2} + \int_{S} \vec{E} \cdot dA (-\hat{n}_{2}) + \int_{S} \vec{E} \cdot dA \hat{n}_{3} + \int_{S} \vec{E} \cdot dA (-\hat{n}_{3})$$

$$= \Phi_{1} - \Phi_{1} + 0 - 0 + 0 - 0$$

$$= 0$$

Permukaan tertutup, Q di dalam

Perhitungan fluks Q di dalam

- Perhatikan arah normal permukaan dan arah medan listrik
- Fluks total pada kubus mempunyai nilai:

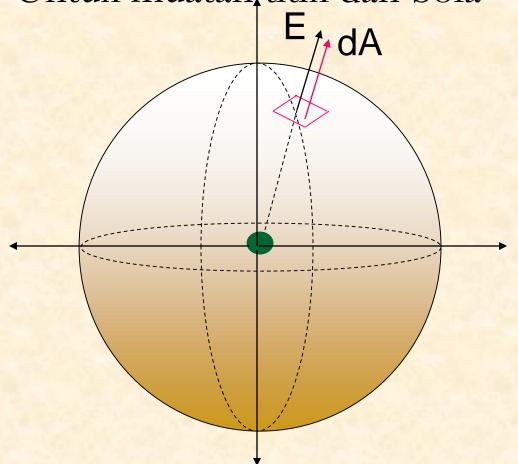
$$\Phi = \int_{S} \vec{E} \cdot d\vec{A}$$

$$= \int_{S} \vec{E} \cdot dA \hat{n}_{1} + \int_{S} \vec{E} \cdot dA (-\hat{n}_{1}) + \int_{S} \vec{E} \cdot dA \hat{n}_{2} + \int_{S} \vec{E} \cdot dA (-\hat{n}_{2}) + \int_{S} \vec{E} \cdot dA \hat{n}_{3} + \int_{S} \vec{E} \cdot dA (-\hat{n}_{3})$$

$$= \Phi_{1} + \Phi_{1} + \Phi_{2} + \Phi_{2} + \Phi_{3} + \Phi_{3}$$

$$\neq 0$$

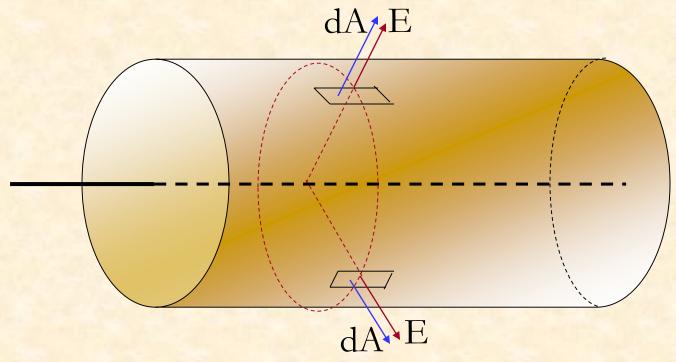
Hukum Gauss


Besar fluks atau garis gaya listrik yang keluar dari suatu permukaan tertutup tergantung muatan yang dilingkupi oleh luasan tertutup tersebut

$$\oint \vec{E} \bullet d\vec{S} = \frac{q}{\varepsilon_0}$$

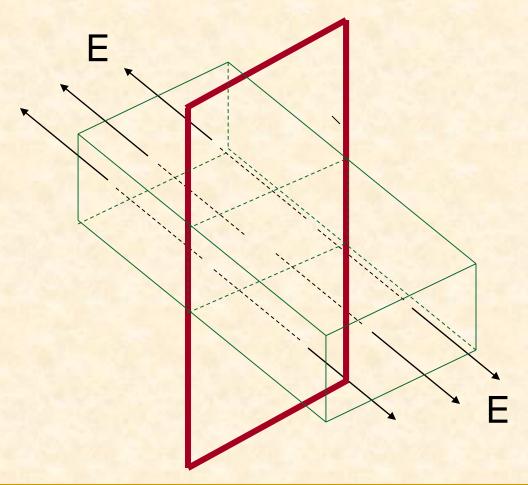
- $\oint \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0}$ Prinsip untuk menggunakan teorema Gauss dengan mudah
 - □ Pilih permukaan yang medan listrik di permukaan tersebut homogen
 - □ Tentukan muatan yang dilingkupi permukaan tersebut
 - □ Tentukan arah medan terhadap arah normal permukaan.

Permukaan Gauss Berbentuk Bola

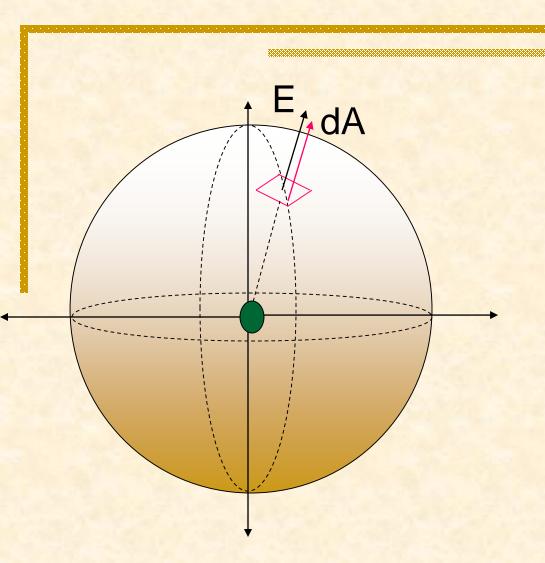

Untuk muatan titik dan bola

Medan dipermukaan bola homogen. Arah medan radial, searah dengan normal permukaan bola

Permukaan Gauss Berbentuk Silinder


Kawat dan silinder panjang tak berhingga

Medan homogen di seluruh permukaan selimut silnder.
 Arah medan radial searah dengan normal permukaaan selimut silinder


Permukaan Gauss Berbentuk Silinder/Balok

Plat tipis luas tak berhingga

Medan homogen pada tutup balok, arah sama dengan normal tutup balok

Medan akibat sebuah muatan titik

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

$$\oint E dA = \frac{q}{\varepsilon_0}$$

$$E \oint dA = \frac{q}{\varepsilon_0}$$

$$E 4\pi r^2 = \frac{q}{\varepsilon_0}$$

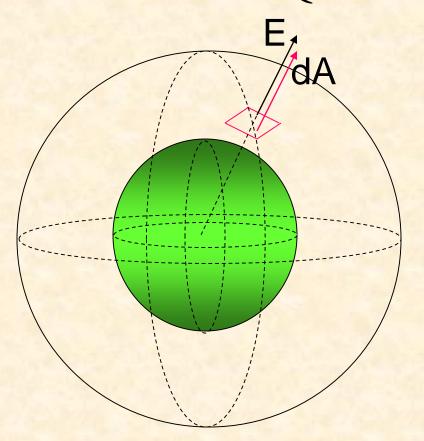
$$\oint E dA = \frac{q}{\varepsilon_0}$$

$$E \oint dA = \frac{q}{\varepsilon_0}$$

$$E4\pi r^2 = \frac{q}{\varepsilon_0}$$

$$E = \frac{q}{4\pi r^2 \varepsilon_0}$$

Konduktor


- Di dalam konduktor, muatan bebas bergerak
- Jika diberi muatan tambahan dari luar → muncul medan listrik → muatan bergerak menghasilkan arus internal → terjadi distribusi ulang muatan tambahan dari luar hingga tercapai keseimbangan elektrostatis -> medan listrik di dalam konduktor menjadi nol -> menurut hukum Gauss berarti muatan di dalam konduktor nol, muatan tambahan dari luar tersebar di permukaan konduktor
- Waktu yang diperlukan untuk mencapai keseimbangan elektrostatis sangat cepat

isolator

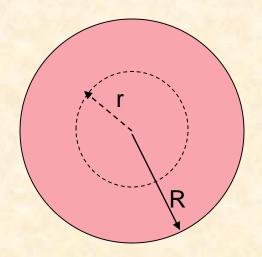
- Di dalam isolator muatan tidak bebas bergerak
- Muatan tambahan dari luar akan terdistribusi merata dalam isolator

Bola konduktor pejal positip

Tinjau suatu bola konduktor pejal dengan jari-jari
 R dan muatan Q

- Muatan hanya tersebar di permukaan bola saja
- •Medan listrik di dalam bola (r<R) nol
- Medan di luar bola dapat dicari dengan cara berikut

Medan listrik di luar bola konduktor


- Buat permukaan Gauss berbentuk bola dengan jari-jari r > R
- Total muatan yang dilingkupi permukaan Gauss adalah Q
- Hukum Gauss untuk kasus bola konduktor pejal:

$$\oint \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0} \to E \oint dS = \frac{Q}{\varepsilon_0}$$

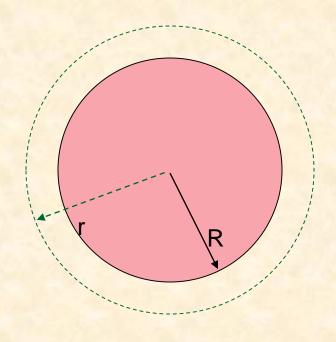
$$E4\pi r^2 = \frac{Q}{\varepsilon_0} \to E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

Bola isolator pejal

- Isolator: muatan tersebar merata di seluruh volum isolator
- Di dalam bola

$$q = \frac{\frac{4}{3}\pi r^3}{\frac{4}{3}\pi R^3}Q = \frac{r^3}{R^3}Q$$

$$\oint \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0}$$


$$E \oint d\vec{S} = \frac{r^3}{\varepsilon_0 R^3} Q$$

$$E 4\pi r^2 = \frac{r^3}{\varepsilon_0 R^3} Q$$

$$E = \frac{r}{4\pi \varepsilon_0 R^3} Q$$

Bola isolator pejal (2)

Medan di luar

$$q=Q$$

$$\oint \vec{E} \cdot d\vec{S} = \frac{Q}{\varepsilon_0}$$

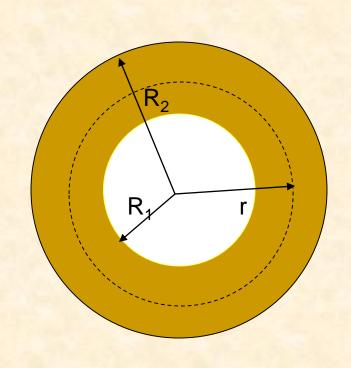
$$E \oint dS = \frac{Q}{\varepsilon_0}$$

$$E 4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$E \oint dS = \frac{Q}{\varepsilon_0}$$

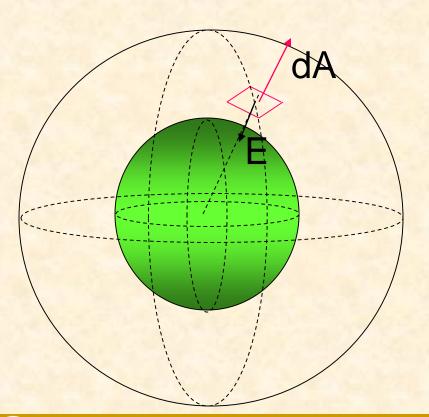
$$E4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$


Medan listrik pada bola isolator berongga

$$q = \frac{\frac{4}{3}\pi r^3 - \frac{4}{3}\pi R_1^3}{\frac{4}{3}\pi R_2^3 - \frac{4}{3}\pi R_1^3}Q$$

$$\oint \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0}$$


$$E \oint dS = \frac{\frac{4}{3}\pi r^3 - \frac{4}{3}\pi R_1^3}{\frac{4}{3}\pi R_2^3 - \frac{4}{3}\pi R_1^3} Q \frac{1}{\varepsilon_0}$$

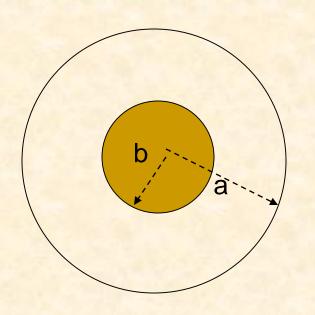
$$E = \frac{r^3 - R_1^3}{R_2^3 - R_1^3} \frac{Q}{4\pi \varepsilon_0 r^2}$$

Bola bermuatan negatip

Pada prinsipnya sama dengan bola bermuatan positip hanya arah medan listriknya masuk menuju pusat bola

$$\oint \vec{E} \cdot d\vec{S} = \frac{-Q}{\varepsilon_0}$$

$$\oint EdS \cos 180 = \frac{-Q}{\varepsilon_0}$$


$$E4\pi r^2 = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{4\pi \varepsilon_0 r^2}$$

$$E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

Dua bola, jenis muatan beda

Sebuah bola tipis jari-jari a bermuatan 2Q. Di dalam bola tipis diletakkan bola pejal konduktor berjari-jari b dan bermuatan –3Q.

Medan untuk daerah r<a ditentukan dengan cara yang sama dengan contoh di slide sebelumnya

Medan untuk r>a

- •Dibuat permukaan Gauss berbentuk bola dengan jarijari r>a
- •Total muatan yang dilingkupi permukaan Gauss:

$$q = 2Q + (-3Q) = -Q$$

•Medan akibat muatan -Q

$$\oint \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0} \to \oint EdS \cos 180 = \frac{-Q}{\varepsilon_0}$$

$$E4\pi r^2 = \frac{Q}{\varepsilon_0} \to E = \frac{Q}{4\pi\varepsilon_0 r^2}$$

Medan listrik akibat kawat lurus

- Permukaan Gauss berbentuk silinder,
- Untuk muatan positip arah medan listrik radial keluar dari pusat silinder
- Untuk muatan negatip arah medan listrik radial masuk menuju pusat silinder

Medan akibat kawat tak berhingga

Fluks medan listrik yang menembus permukaan silinder

$$\oint \vec{E} \cdot d\vec{S} = \oint_{tutup} \vec{E} \cdot d\vec{S} + \oint_{selubung} \vec{E} \cdot d\vec{S} + \oint_{tutup} \vec{E} \cdot d\vec{S}$$

$$= \oint_{tutup} EdS \cos 90 + \oint_{selubung} EdS \cos 0 + \oint_{tutup} EdS \cos 90$$

$$= E2\pi rl$$

Jika panjang kawat L, muatan total Q, maka muatan yang dilingkupi oleh silinder:

$$q = \frac{Q}{L}l = \lambda l$$

Hukum Gauss untuk kawat sangat panjang

Penentuan medan listrik

$$\oint \vec{E} \cdot d\vec{S} = \frac{q}{\varepsilon_0}$$

$$E2\pi rl = \frac{Q}{\varepsilon_0 L}$$

$$E = \frac{Q}{2\pi \varepsilon_0 rL}$$

$$= \frac{\lambda}{2\pi \varepsilon_0 r}$$

Contoh soal untuk kawat panjang (1)

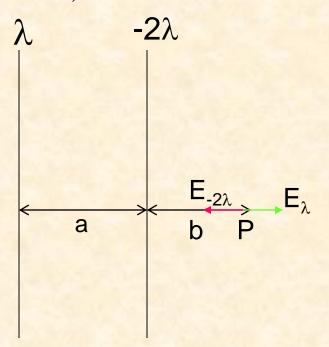
Tentukan medan listrik dan gambarkan arahnya pada titik A dan B yang berjarak 20 cm dari kawat dengan rapat muatan λ=10 mC/m seperti pada gambar.

Solusi:

$$E = \frac{\lambda}{2\pi\varepsilon_o r} = \frac{10.10^{-3}}{2\pi\varepsilon_o(0,2)} = \frac{0,1}{4\pi\varepsilon_o} = \frac{0,025}{\pi\varepsilon_o}$$
 N/C

Contoh soal untuk kawat panjang (2)

Tentukan medan listrik dan gambarkan arahnya pada titik A dan B yang berjarak 20 cm dari kawat dengan rapat muatan λ=-10 mC/m seperti pada gambar.



Solusi:

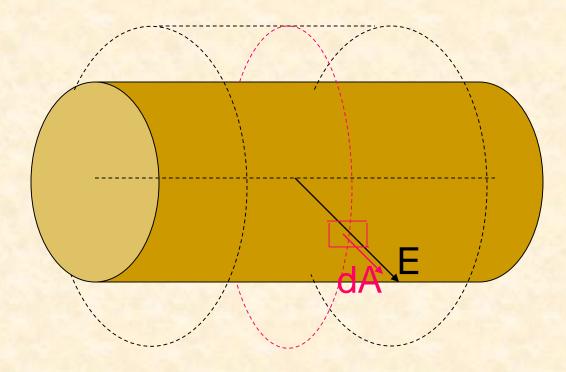
$$E = \frac{\lambda}{2\pi\varepsilon_{o}r} = \frac{10.10^{-3}}{2\pi\varepsilon_{o}(0,2)} = \frac{0,1}{4\pi\varepsilon_{o}} = \frac{0,025}{\pi\varepsilon_{o}} \text{ N/C}$$

Medan listrik karena dua kawat sejajar

Dua buah kawat pajang tak berhingga diberi muatan masing-masing dengan rapat muatan λ dan -2 λ. Jarak kedua kawat a. Tentukan medan listrik pada titik P yang berjarak b dari kawat -2 λ.

$$\vec{E}_{total} = \vec{E}_{-2\lambda} + \vec{E}_{\lambda}$$

$$E_{total} = E_{-2\lambda} - E_{\lambda}$$

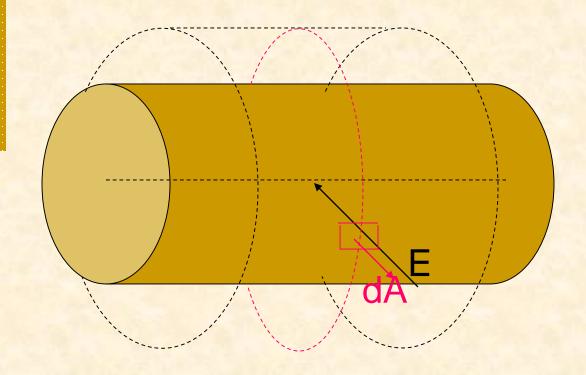

$$= \frac{2\lambda}{2\pi\varepsilon_0(b)} - \frac{2\lambda}{2\pi\varepsilon_0(a+b)}$$

Medan listrik akibat kawat berbentuk silinder

- Misalkan silinder konduktor berjari-jari R, panjangnya L, dan bermuatan Q.
- Permukaan Gauss berbentuk silinder dengan jarijari r dan panjang L seperti kawat panjang tak berhingga
- Untuk muatan positip, medan listrik berarah radial meninggalkan sumbu pusat silinder
- Untuk muatan negatip, medan listrik berarah radial menuju sumbu pusat silinder

Permukaan Gauss pada silinder

Muatan positip


$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

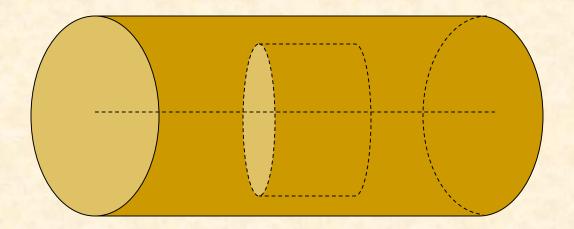
$$\oint E dA \cos 0 = \frac{q}{\varepsilon_0}$$

$$E \oint dA = \frac{q}{\varepsilon_0}$$

Permukaan Gauss pada silinder

Muatan negatip

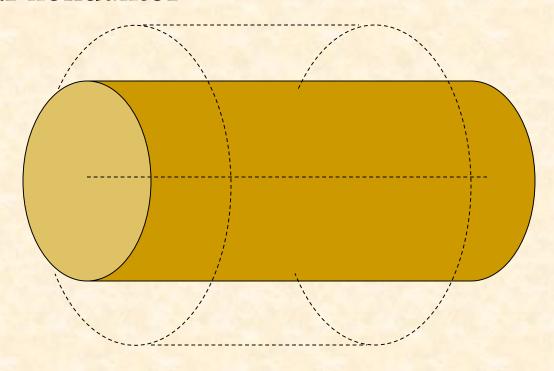
$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$


$$\oint EdA \cos 180 = \frac{-q}{\varepsilon_0}$$

$$E \oint dA = \frac{q}{\varepsilon_0}$$

Medan listrik akibat silinder konduktor pejal

Di dalam konduktor



■ Muatan yang dilingkupi permukaan Gauss =0 karena pada konduktor muatan hanya tersebar di permukaan konduktor saja. Dengan demikian, medan listrik di dalam konduktor E=0

Medan listrik akibat silinder konduktor pejal

Di luar konduktor

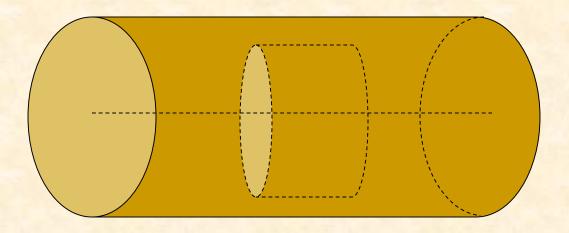
Muatan yang dilingkupi permukaan Gauss

$$q = \rho V = \frac{Q}{\pi R^2 L} \pi R^2 L = Q$$

Medan akibat silinder konduktor

Medan listrik di luar silinder konduktor

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$


$$E \oint dA = \frac{Q}{\varepsilon_0}$$

$$E2\pi rL = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{2\pi \varepsilon_0 Lr}$$

Medan listrik akibat silinder isolator pejal

Di dalam isolator

Muatan yang dilingkupi permukaan Gauss

$$q = \frac{\pi r^2 L}{\pi R^2 L} Q = \frac{r^2}{R^2} Q$$

Silinder isolator pejal

Medan listrik di dalam isolator (r<R)</p>

$$\oint \vec{E} \bullet d\vec{A} = \frac{q}{\varepsilon_0}$$

$$E \oint dA = \frac{r^2}{\varepsilon_0 R^2} Q$$

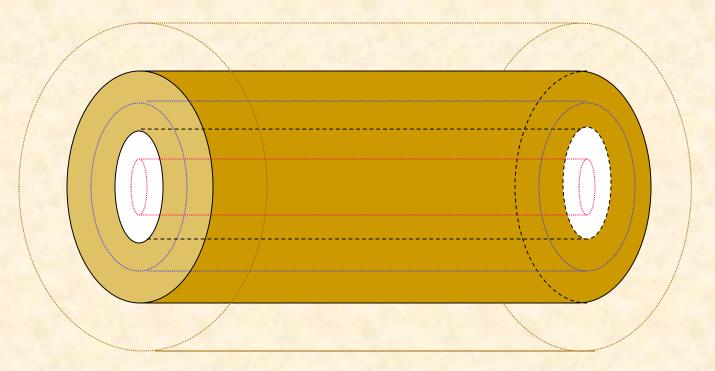
$$E2\pi rL = \frac{r^2}{\varepsilon_0 R^2} Q$$

$$E = \frac{r}{2\pi\varepsilon_0 R^2 L} Q$$

Silinder isolator pejal (2)

Medan di luar silinder (r>R)

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$


$$E \oint dA = \frac{Q}{\varepsilon_0}$$

$$E2\pi rL = \frac{Q}{\varepsilon_0}$$

$$E = \frac{Q}{2\pi \varepsilon_0 Lr}$$

Silinder Isolator Berongga

 Jari-jari dalam silinder a, jari-jari luar b, muatan Q, dan panjang silinder L

Untuk r<a, E=0, karena q=0

Silinder isolator berongga (2)

Untuk r>b, semua muatan terlingkupi oleh permukaan
 Gauss (q=Q), sehingga medan di luar silinder adalah:

$$E = \frac{Q}{2\pi\varepsilon_0 Lr}$$

- Untuk a<r<b, dibuat permukaan Gauss berbentuk silinder dengan jari-jari a<r<b dan panjang L
 - Muatan yang dilingkupi

$$q = \rho_{silinder} V_{Gauss} = \frac{Q}{\pi b^2 L - \pi a^2 L} \pi r^2 L - \pi a^2 L = \frac{(r^2 - a^2)}{(b^2 - a^2)} Q$$

Bola isolator berongga

Medan listrik untuk a<r<b

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

$$E \oint dA = \frac{(r^2 - a^2)Q}{\varepsilon_0(b^2 - a^2)}$$

$$E2\pi rL = \frac{(r^2 - a^2)Q}{\varepsilon_0(b^2 - a^2)}$$

$$E = \frac{(r^2 - a^2)Q}{2\pi\varepsilon_0(b^2 - a^2)Lr}$$

Dua silinder dengan muatan berbeda

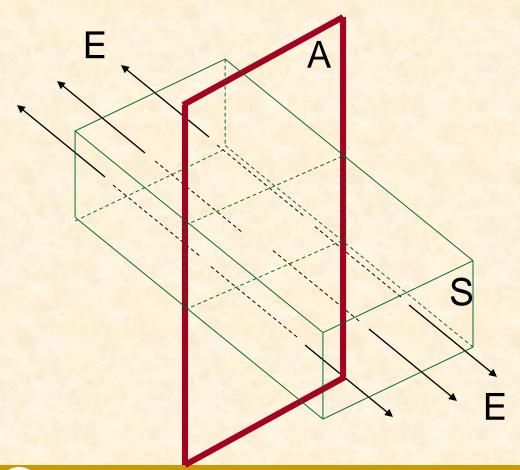
- Silinder pejal isolator berjari-jari a, panjang c, dan bermuatan 3Q berada dalam suatu silinder berongga yang jari-jari dalamnya b, jari-jari luarnya d, panjangnya c, dan bermuatan –Q.
- Di dalam isolator (r<a)

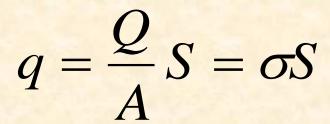
$$q = \frac{\pi r^2 c}{\pi a^2 c} 3Q = \frac{r^2}{a^2} 3Q$$

$$\oint \vec{E} \cdot d\vec{S} = \frac{(r^2/a^2)3Q}{\varepsilon_0} \to E2\pi rc = \frac{3Qr^2}{\varepsilon_0 a^2} \to E = \frac{3Qr}{2\pi a^2 c \varepsilon_0}$$

Di antara isolator dan konduktor (a<r<b)

$$\oint \vec{E} \cdot d\vec{S} = \frac{3Q}{\varepsilon_0} \to E2\pi rc = \frac{3Q}{\varepsilon_0} \to E = \frac{3Q}{2\pi rc \varepsilon_0}$$


Di dalam konduktor (b<r<d): E=0


Di luar konduktor (r>d)

$$\oint \vec{E} \cdot d\vec{S} = \frac{2Q}{\varepsilon_0} \to E2\pi rc = \frac{2Q}{\varepsilon_0} \to E = \frac{2Q}{2\pi rc \varepsilon_0}$$

Medan listrik Di Sekitar Plat Tipis (1)

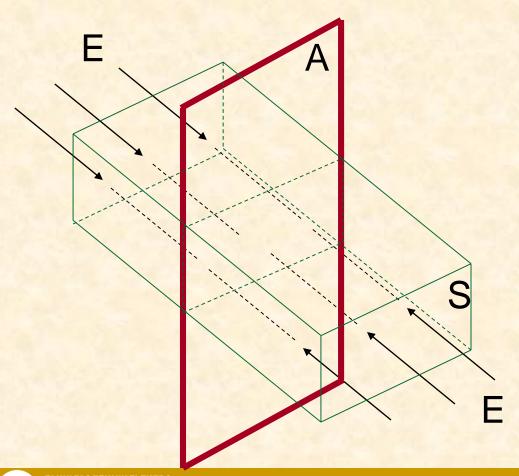
Misal: Luas Plat A dan rapat muatan per satuan luas σ

Perhitungan medan listrik akibat plat tipis (1)

$$\oint \vec{E} \cdot d\vec{S} = \int_{tutup} \vec{E} \cdot d\vec{S} + \int_{selubung} \vec{E} \cdot d\vec{S} + \int_{tutup} \vec{E} \cdot d\vec{S}$$

$$= ES + 0 + ES$$

$$= 2ES$$


$$\oint \vec{E} \bullet d\vec{A} = \frac{q}{\varepsilon_0}$$

$$E2S = \frac{\sigma S}{\varepsilon_0}$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Medan listrik Di Sekitar Plat Tipis (2)

Misal: Luas Plat A dan rapat muatan per satuan luas -σ

$$q = \frac{-Q}{A}S = -\sigma S$$

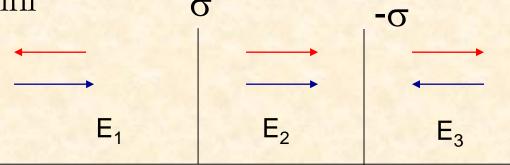
Perhitungan medan listrik akibat plat tipis(2)

$$\oint \vec{E} \cdot d\vec{S} = \int_{tutup} \vec{E} \cdot d\vec{S} + \int_{selubung} \vec{E} \cdot d\vec{S} + \int_{tutup} \vec{E} \cdot d\vec{S}$$

$$= -ES + 0 - ES$$

$$= -2ES$$

$$\oint \vec{E} \cdot d\vec{A} = \frac{q}{\varepsilon_0}$$

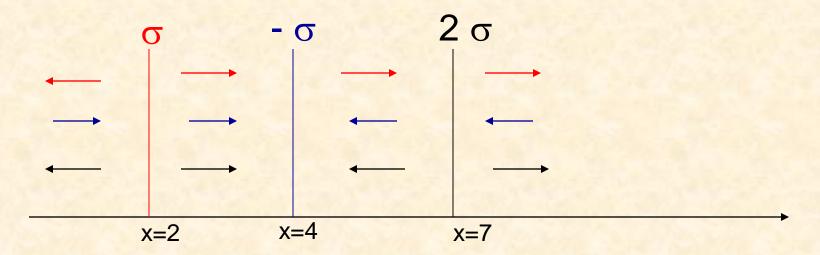

$$E(-2S) = \frac{-\sigma S}{\varepsilon_0}$$

$$E = \frac{\sigma}{2\varepsilon_0}$$

Medan listrik akibat dua plat tipis

Dua plat tipis luas tak berhingga masing-masing mempunyai rapat muatan σ dan - σ. Medan listrik di sekitar plat tersebut dapat dianalisis seperti gambar di bawah ini

$$E_{\sigma} = E_{-\sigma} = \frac{\sigma}{2\varepsilon_0}$$


$$\vec{E}_1 = E_{\sigma}(-\hat{i}) + E_{-\sigma}(i) = 0$$

$$\vec{E}_2 = E_{\sigma}(\hat{i}) + E_{-\sigma}(i) = \frac{\sigma}{c}$$

$$\vec{E}_3 = E_{\sigma}(\hat{i}) + E_{-\sigma}(-i) = 0$$

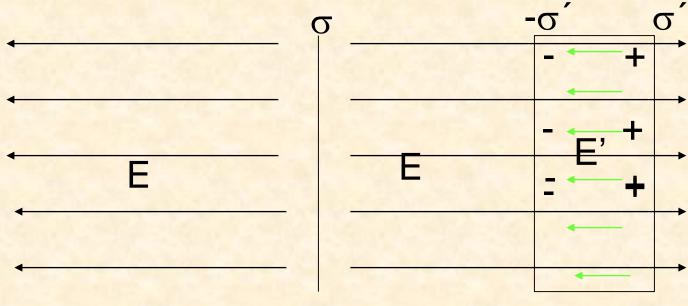
Medan akibat 3 plat tipis

Tiga buah plat tipis masing-masing bermuatan σ , - σ , dan 2σ . Medan di sekitar plat bisa dicari dengan cara berikut

$$\vec{E}_{total} = \vec{E}_{\sigma} + \vec{E}_{-\sigma} + \vec{E}_{2\sigma}$$

Medan listrik akibat 3 plat tipis (2)

$$\begin{split} \vec{E}(x < 2) &= E_{\sigma}(-\hat{i}) + E_{-\sigma}(\hat{i}) + E_{2\sigma}(\hat{i}) \\ &= -\frac{\sigma}{2\varepsilon_0} \hat{i} + \frac{\sigma}{2\varepsilon_0} \hat{i} + \frac{2\sigma}{2\varepsilon_0} \hat{i} \\ &= \frac{\sigma}{2\varepsilon_0} \hat{i} \end{split}$$


$$\begin{split} \vec{E}(2 < x < 4) &= E_{\sigma}(\hat{i}) + E_{-\sigma}(\hat{i}) + E_{2\sigma}(\hat{i}) \\ &= \frac{\sigma}{2\varepsilon_{0}} \hat{i} + \frac{\sigma}{2\varepsilon_{0}} \hat{i} + \frac{2\sigma}{2\varepsilon_{0}} \hat{i} \\ &= \frac{4\sigma}{2\varepsilon_{0}} \hat{i} \end{split}$$

$$\begin{split} \vec{E}(4 < x < 7) &= E_{\sigma}(\hat{i}) + E_{-\sigma}(-\hat{i}) + E_{2\sigma}(\hat{i}) \\ &= \frac{\sigma}{2\varepsilon_{0}} \hat{i} - \frac{\sigma}{2\varepsilon_{0}} \hat{i} - \frac{2\sigma}{2\varepsilon_{0}} \hat{i} \\ &= -\frac{2\sigma}{2\varepsilon_{0}} \hat{i} \end{split}$$

$$\begin{split} \vec{E}(x > 7) &= E_{\sigma}(\hat{i}) + E_{-\sigma}(-\hat{i}) + E_{2\sigma}(\hat{i}) \\ &= \frac{\sigma}{2\varepsilon_{0}} \hat{i} - \frac{\sigma}{2\varepsilon_{0}} \hat{i} + \frac{2\sigma}{2\varepsilon_{0}} \hat{i} \\ &= \frac{2\sigma}{2\varepsilon_{0}} \hat{i} \end{split}$$

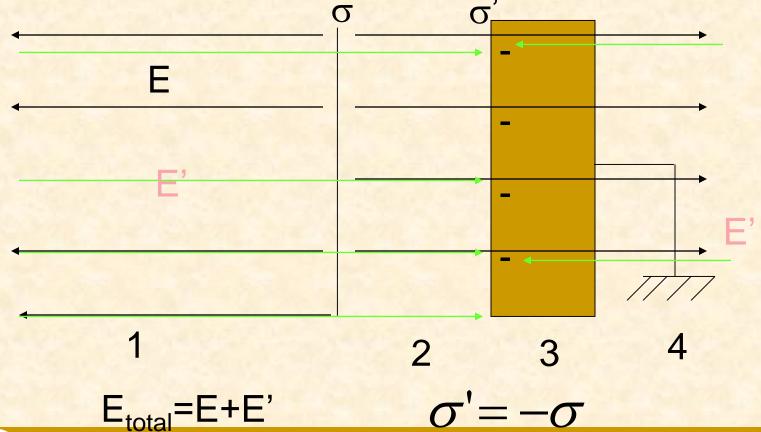
Muatan induksi

 Muatan muncul akibat pengaruh medan listrik eksternal

logam netral

■ Di dalam tipis logam: E+E′=0

$$i\frac{\sigma}{2\varepsilon_0} - i\frac{\sigma'}{\varepsilon_0} = 0$$


$$\sigma' = \frac{\sigma}{2}$$

Logam ditanahkan

Bagian yang terhubung dengan tanah akan bermuatan netral

